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THE KARAP METHOD AS A DATA MINING TOOL 

 

Abstract 

 

In market research the KARAP method is mainly used in connecting each 

respondent with a particular criterion from p criteria set in the questionnaire. This 

connection is made through the use of Multivariate Data Analysis and the Euclidean 

vector space R(p-1) created by p-1 factorial axes. 

 

Overview 

 

An ascending hierarchical classification of the «subject» (rows) of a data table 

Τ(n,p) is a procedure that produces a partition sequence of an initial set into non-

empty and foreign two-by-two subsets between them, called classes, one within the 

other, interconnecting each time only two classes, which based on a metric, present 

the smallest distance in each grouping step. 

 

As far as it can be understood, the purpose of ascending hierarchical classification 

is to group all statistical units of a population into a limited number of homogeneous 

classes, the so called «clusters» as to the behaviour of certain variables, taking into 

account all variables, so that each one is as much as possible different from the 

others. 

 

In particular, when using the VACOR method for clustering, clusters are created 

based on an objective algorithm (Ward’s algorithm), apart from the subjective 

methods that may be developed by each researcher. We say objective algorithm 

because statistical units’ grouping is performed with no a priori hypothesis in the 

original data table according to x2 metric.  

 

In classes created by the VACOR method, the multitude of variables that 

characterise them are identified. This is possible through the aid of MAD 

programme with table «Variables’ contribution in classes’ characterization» in 

combination with table «Variables’ contribution in the breakdown of k higher 

nodes». Consequently, the «subjects» involved in classes’ formations are also 

associated with variables characterising each class. 
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It is known that using the VACOR method with the known programmes 

implementing Ascending Hierarchical Classification, it is not possible to connect 

each «subject» to a particular variable, unless a statistical test of the difference in 

proportions at 5% confidence level is used, between ratio Ρδ and each of the p 

values corresponding to the sample specified in each «subject» and ratio ΡΜ of each 

variable to the sum of p variables (Morineau A, 1984). 
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As discussed by Professor Th. Bechrakis. «Each group’s problems are classified 

based on the test value. Test value is a criterion used for problem selection. 

characterising each group. The greater the test value for a particular group and a 

particular problem. the more characteristic this problem is for this particular group» 

(Bechrakis. Th. p. 74) 

 

Therefore, when value z>1.645 results from association (2) the alternative 

hypothesis Η1 is true, i.e. M variable with PM ratio strongly characterises the class or 

subject with a ratio of Pδ. In different z values, where -1.645<z<1.645, the variable 

simply shows medium association (positive or negative) depending on the value it 

presents), while when value z<-1.645 is the result, the absence of variable 

dependence to the class (or the object) is considered strong. 

 

On the other hand, the association of the subjects with each variable can be 

performed as long as the data table T(n,p) is analysed through the Correspondence 

Analysis, the coordinates of p variables and n objects are extracted on factorial axes 

p-1, and then the distances of each object A from each variable B are calculated, 
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using the following association, which calculates the distance between two vectors 

of the vector space Rn (Serge Lang p. 16) 

 

                                            ( ) ( )A B A B A B− = − ⋅ −                                 (3) 

 

Initially, the results of the association of «subjects» with the resulting variables 

will be compared, firstly following classification using the VACOR method, using 

the abovementioned test with z distribution, and secondly through the placement of 

all points (rows and columns) of the data table T(n,p) in the Euclidean vector space    

R(p-1),based on the factors resulting from the implementation of the Correspondence 

Analysis. This project will also serve as a new process for the classification of 

«subjects». 

   

The selection of the Euclidean space Rp-1 was based on the fact that factorial axes 

create an orthonormal basis for space R(p-1), where p variables are placed based on 

the coordinates as well as n rows of the data table in their actual places, from which 

all information of the data table under analysis are provided. 

 

At this point we should present an example to verify the abovementioned 

suggestions. 

 

Associations between factors 

 

Based on the coincidence table of two qualitative variables Α and Β the 

corresponding relative frequencies table is created. 

 

Table 1: Relative frequencies table 
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Correspondence Analysis allows not only the geometric and algebraic 

ascertainment of deviation from independence state of the two qualitative variables 

X and Y, but also the exploration of similarities among the corresponding 

distributions (profiles) of the table’s rows and columns, corresponding to the total 

ratings of the two variables Χ and Υ. 
 

Then, rows profile table is created 
 

Table 2: Row profile table fJ
I 

 

Ratings b1………..bj…………bp  

a1  .  

.  .  

ai ................fi
j= fij/fi ………… 1 

.  .  

an  .  

    

To make clear why it is preferable to use the profile of a table’s row as vectorial 

expression of the respective statistical unit i. instead of the row with the original 

data, the answer is as follows: Since two rows are proportional to each other, their 

profiles will be identical, and when represented on a graph, the graphical 

representations of the corresponding vectors will coincide, while, to the contrary, 

rows with the original data will represent two collinear vectors. 

 

This finding is very important since interest in the Correspondence Analysis is 

focused in the proportions of the «subjects» within «variables» ratings. 

Projections of fJ
i points of cloud N(I)J of the data table’s rows on the factorial 

axes ∆a (a=1....p-1), which are denoted Fa(i) (where i= i
jf  any row profile), constitute 

the coordinates of these points upon axes ∆a. Each coordinate Fa(i) relevant to 

factorial axis a is called factor a of profile i (J-P & F. Benzecri 1980 p. 65) 

 

To define the factorial axes ∆a at a plane (a=1,2) we use Huyghens’ theorem, 

which states that total inertia ΙTotal of cloud N(I) can be analysed in two parts. The 

first part relates to inertia Ι//∆ along a line ∆a which crosses the barycentre G{=fJ} of 

the cloud and the other one in inertia Ι┴∆ vertical line ∆α.  
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Among the infinite lines passing through point G, the one that maximises inertia 

Ι//∆ is obtained and thus minimises inertia Ι┴∆.  

I.e.  

                                                               Total = Ι//∆ +Ι┴∆                                                                                     (4) 

Graphically:  

 

Figure 1: Total inertia breakdown 

 

As we know a characteristic vector ua=φa
J associated with factorial axis ∆a 

corresponds to every characteristic root λa of a square table J I J
J J IS f f= � . 

 

For each vector φa
J (j=1....p) its coordinates satisfy the following associations: 
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Each factor Fa(i), which is a vector, is calculated using the following association 

 

                                                 Fa(i) =
p

i
j

j 1

f φ( j)
=

⋅∑                                                      (7) 

 

In each factorial axis ∆a the following associations apply: 
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While for two different factorial axes ∆r and ∆s the following applies: 

 

                                                   
n

i r s
i 1

f F (i)F (i) 0
=

⋅ =∑                                               (10)            

 

Number Fa(i) in absolute value measures the distance between the centre of 

gravity G={fJ} of cloud N(I)J from the projection of profile fij (which represents 

row i of the data table) on axis ∆a. 

 

Generally the following applies 

 

                                                   ( )
p 1

2 i 2
J a

a 1

d f ,  G F (i)
−

=

=∑                                            (11) 

 

Therefore, the distance separating the centre of gravity G={fJ} from the 

projection of profile row i
jf  e.g. at factorial plane ∆1x∆2 is the hypotenuse of a 

right triangle with sides F1(i) and F2(i). I.e. for factorial level 1x2 the following 

relationship applies. 

 

                                                    ( )2 i 2 2
J 1 2d f ,  G F (i) F (i)= +                                  (12) 

 

The distance d2(fJ
i, fJ) is also calculated using the following relationship 

 

                                                    ( )
p

2 i i 2
J j J

j 1 i

1
d f ,  G (f f )

f=

= −∑                                  (13) 

 

Relationship 12 indicates that factorial axes, upon which factors Fa(i) are 

calculated, are rectangular, and therefore the system of p-1 factorial axes constitutes 

the construction of  orthonormal coordinate system in p 1R −  vector space. 

Subsequently we will present a numerical example to verify relationship 13. 

 

Numerical example 

 

Using a simple numerical example it is possible to ascertain easily the validity of 

relationships 12 and 13.  
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The following coincidence table is given 

 

Table 3: Data Table 

 

 

 

 

 

 

 

 

 

Firstly we find the profiles of rows I
Jf and columns J

If . I.e. 

 

I J
J I

0 1 0
0 1/ 2 1/ 2 0

1/ 2 0 1/ 2
f και f 1/ 2 0 1/ 2 0

1/ 2 1/ 2 0
0 1/ 2 0 1/ 2

0 0 1

           = =          

 

 

Profiles J
If  emerged after getting inverse table Τ(4,3)  

 

For the basic application of Correspondence Analysis finding the symmetric 

square table SJ
J is required, calculated with the following product. 

 

J I J
J J I

0 2 0
0 1 1 0 2 1 1

1 0 11 1 1
S f f 1 0 1 0 1 3 0

1 1 02 2 4
0 1 0 1 1 0 3

0 0 2

               = = ⋅ = ⋅               

�  

 

Then the three characteristic roots of square table SJ
J which are as follows:    

 

0

4
λ 1

4
= =  1

3
λ

4
=  2

1
λ

4
=  

 

 

Tags J1 J2 J3 Sum 

Ι1 0 1 0 1 

Ι2 1 0 1 2 

Ι3 1 1 0 2 

Ι4 0 0 1 1 

 2 2 2 6 
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As is known, in every characteristic root λi (apart from the trivial root λ0) 

corresponds a characteristic vector ua=φa
J, which is connected to factorial axis ∆a. 

 

For each characteristic vector φa
J (j=1....p) its coordinates meet, as already 

mentioned above, relationships 5 and 6 

 

Characteristic vectors’ values are presented in relationships 14 and 15 

 

                                  φ11=0 , φ12=
6

2
 and φ13= - 6

2
                                           (14) 

 

                                   φ21= 2− , φ22= 2

2
and φ23=

2

2
                                        (15) 

 

Using relationship 7, factors I
aF  have the following values. 

 

I
a

6 2
2 2

0 20 1 0 6 2
1/ 2 0 1/ 2 6 2 4 4F
1/ 2 1/ 2 0 2 2 6 2

0 0 1 6 2 4 4
2 2 6 2

2 2

           −        − −          = ⋅ =              −         −       −  

 

We find that relationship 9 is verified 

 

λ1=
2 2 2 2

1 6 2 6 2 6 1 6 3
6 2 6 4 6 4 6 2 4

                ⋅ − + ⋅ + ⋅ − + ⋅ =                         
 

 

λ2=

2 2 2 2

1 2 2 2 2 2 1 2 1

6 2 6 4 6 4 6 2 4

                ⋅ + ⋅ − + ⋅ − + ⋅ =                         
 

 

Factors of variables Ga
J can be found using the relationship 

 

                                            
J J J
a a I

α

1
G F f

λ
= �                                                    (16)                         

 



 15 

Which shows 

 

                                          J
a

2
0

2

3 2 2
G

4 4

3 2 2

4 4

  −       =       −   

 

 

Of the four rows i1,i2,i3 and i4 the coordinates’ values of the two factorial axes ∆1 

and ∆2 are as follows: 

 

1 1 1 2 1 3 1 4

6 6 6 6
F (i ) , F (i ) , F (i ) , F (i )

2 4 4 2
= =− = =−  

 

2 1 2 2 2 3 2 4

2 2 2 2
F (i ) , F (i ) , F (i ) , F (i )

2 4 4 2
= =− =− =  

 

While the corresponding masses of rows are equal to 

 

1 2 3 4

1 2 2 1
f , f , f , f

6 6 6 6
= = = =  

 

The fact that the two factorial axes ∆1 and ∆2 are vertical will be found through 

the verification of relationship 12, which is a formulation of the Pythagorean 

Theorem at plane.  

 

E.g. for row i2 we have 

 

1 2 2 2

6 2
F (i ) 0,612, F (i ) 0,354

4 4
=− =− =− =−  

 

Using relationship 13 we have 

 

( )
2 2 2

2
2 J

1 1 2 1 2 1 1 2 1 4 1 18 1
d i ,f 0 3 3 3

2 2 22 6 6 2 6 36 36 36 36 2
6 6 6

         = − + − + − = ⋅ + ⋅ + ⋅ = =             
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Thus                                 2
2 J 2 J

1
d (i , f ) d(i , f ) 0,707

2
= → =  

 

Using the values of F1(i2) and F2(i2) of i2 row in factorial axes ∆1 and ∆2 we have 

 
2 2

2 2
1 2 2 2

6 2 6 2 1
F (i ) F (i )

4 4 16 16 2

      + = − + − = + =         
 

 

Therefore relationship 12 is verified 

 

                                          2
2 Jd (i , f ) = 2 2

1 2 2 2F (i ) F (i )+                                             (17) 

 

Schematically the factorial plane 1x2 is as follows. 

 

 
 

Figure 2: Verification of the relationship 2
2 Jd (i , f ) = 2 2

1 2 2 2F (i ) F (i )+  

 

     Apparently relationship 17 applies to the multidimensional space Rp-1   

 

             2
k Jd (i , f ) = 2 2 2

1 k 2 k s kF (i ) F (i ) ..... F (i )+ + +  where k=1.…n  and s=1.….p-1       (18) 

 

Relationship 18 is Pythagorean Theorem’s expression at the multidimensional 

space Rp-1   As far as the distance between a row’s profile i
Jf  and a variable’s 

profile j
If  is concerned, the following relationship applies. 

 

                                                  ( )
p 1

22 i j
J I p p

p 1

d f ,  f F (i) G ( j)
−

=

 = −  ∑                          (19) 
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 With the example’s data from row i1 and column j1 we have 

 

[ ] [ ]

2 2

2 22
1 1 1 1 1 1 2 1 2 1

6 2 2
d (i , j ) F (i ) G ( j ) F (i ) G ( j ) 0 ( ) 3,5

2 2 2

   
   = − + − = − + − − =   
      

 

 

Thus                                              1 1d(i , j ) 3,5 1,871= =  

 

Connection among the «rows» and «columns» of a two-dimensional data table  

 

Let in a data table T(n,p) n rows correspond to n respondents, while in p rows of 

the table the values of p questions correspond to p variables. A detailed reference to 

the query of identifying a respondent with the variable mostly associated will be 

made, using a particular example of six qualitative variables (for the measurement 

of which a 5-point Likert scale is used, where 5 concerned excellent impression), in 

which 99 persons responded, constituting one of the five classes created through the 

ascending hierarchical classification application with the VACOR procedure, in 

1721 foreign visitors of Thessaloniki.  

 

Data are included in the research conducted within the framework of 

ARCHIMIDES III programme entitled «Data Analysis and Knowledge 

Management Technologies in tourism products’ design» with coordinator Professor 

Dr. Dimitrios Karapistolis.  

 

The questionnaire included six questions relating to foreign visitors’ rating of the 

following: a) the sights of Thessaloniki b) Greek cuisine c) the city's nightlife d) 

architectural style e) safety and f) locals’ friendliness.   

 

The six variables are represented respectively as follows: ∆4, ∆5, ∆6, ∆7, ∆8, ∆9. 

Given the classification of the 99 persons in one of the groups created by the 

classification of the 1721 persons using the VACOR method.  

Table 4 presents a part of their answers. 
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Table 4: Part of the data table 

 

 
 

Given the statistical test of ratios’ difference (relationships 1 and 2) at 5% 

significance level, the connection of each class or respondent with one or more 

variables is defined. 

 

Having applied the Ascending Hierarchical Classification with the VACOR 

method to table 4 data, the particular typology was created with the following five 

homogeneous clusters: 180, 186, 191, 192 and 193, in which when the 

abovementioned hypothesis testing is used Table 5 is found, where cluster 186 

seems to connect to two variables, ∆5 and ∆6, while cluster 192 is more connected 

to variables ∆5, ∆7 and ∆9, with greater intensity, though, towards ∆5 

(Z∆5=6.3422).  

 

Table 5: Presents the connection among the 5 clusters and the six variables 

 
 

 

 

 

 

 

 

The application of the test in the six variables’ values for each respondent results 

in Table 6, from which it is evident that respondent 20 is more connected to 

variables ∆5, ∆8 and ∆9 with greater intensity for ∆5 (Z∆5=7.1634), while 

respondent 315 seems to be connected to three variables, ∆5, ∆6 and ∆7 with a 

greater intensity for ∆6 (Z∆6=7.9739).  

 

 

Tags ∆4 ∆5 ∆6 ∆7 ∆8 ∆9 

180 -0.4215 -14.422 13.699 0.9611 2.244 -2.414 
186 0.9345 1.8842 5.5692 -1.3116 -3.14 -2.392 
191 12.4939 -15.39 -15.873 11.057 -2.73 3.528 
192 -4.0938 6.3422 -6.8836 1.9318 0.147 2.51 
193 -0.2294 0.1392 -1.2727 -1.6656 2.255 0.518 
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Table 6: Presents the connection between respondents and variables 

 
Tags ∆4 ∆5 ∆6 ∆7 ∆8 ∆9 

11 -0.5345 1.5176 0.6310 0.0817 0.5959 -1.7833 
20 -4.8848 7.1634 -4.8654 -4.3151 5.0210 2.4658 
60 -1.7209 -2.0604 3.6369 4.0674 -5.8574 2.0785 
. . . . . . . 

315 -3.4385 2.9401 7.9739 1.9090 -7.1596 -0.0129 
. . . . . . . 

1623 1.5220 -15.3903 6.7158 8.1673 2.6932 -5.6008 
. . . . . . . 

1712 4.3130 1.8549 -7.4562 11.7076 -1.2364 -10.0491 

 

With the procedure, of course, there are also many respondents, who are not 

connected to any variable, such as respondent 11, because the value of the z 

distribution in included between values -1.645<z<1.645, i.e. it is due to random 

factors, since Η0 applies. 

 

Therefore, from Table 6, we consider, as already mentioned, that the greater z 

value corresponding to a variable from the row of the 6 values, determines the 

respondent’s connection to that particular variable. 

 

Using as an alternative approach to the problem the connection of respondents 

with variables, it is appropriate to apply in table 4 data the Correspondence 

Analysis, and then, according to the respondents’ coordinates and the variables of   

p-1 factorial axes, to determine through the use of Euclidean metrics, the 

respondents that are mainly connected to particular variables. 

 

In any case, the extraction of results through the use of the Correspondence 

Analysis presupposes taking into account the explanatory power of the factorial 

axes.      

 

For this there are three explanatory  instances, depending on the explanatory 

power of the factorial axes; i.e. the use of two or three factorial axes or to use all 

factorial axes specified by the whole set of variables.  

 

1. With two factorial axes  

The analysis of table 4 data through the Correspondence Analysis the following 

are found: 
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Α) Display of characteristic eigenvalues 

 

Table 7: Histogram of characteristic eigenvalues 

 
Total inertia  0.09244 
Axis    Inertia        %Interpretation     Sum             |Histogram Eigenvalues 

   1       0.0305713           33.07               33.07            |********** 
   2       0.0285268           30.86                63.93           |******* 
   3       0.0149623           16.19               80.11            |**** 
   4       0.0097252           10.52               90.63            |*** 
   5       0.0085587             9.37              100.00           |* 

 

From Table 7 it is evident that with the first two factorial axes 63.93% of all 

information is derived, coming from table 4 data.  

 

Table 8: Coordinates of respondents and variables for the whole set of factorial 

axes 

 

Respondents’ Coordinates Variables’ Coordinates 

  
 

Then we observe factorial plane 1x2 

 

 
Figure 3: Variables’ factorial plane 1x2 
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Based on the first two factorial axes, plane 1x2 is divided into four subspaces. In 

the 1st subspace points with both coordinates positive are placed. Following the 

same procedure, depending on the signs of the points’ coordinates they are placed in 

the 2nd, 3rd, or 4th subspace. 

 

Therefore variables ∆6 and ∆8 are located in the 1st subspace, no variable is 

located in the 2nd subspace, and variables ∆4, ∆7 and ∆9 are located in the 3rd 

subspace, while variable ∆5 is located in the 4th subspace.  

 

The profiles of the 99 respondents are also placed on factorial plane 1x2, 

depending on their coordinates’ signs, where one group of «subjects» in the 2nd 

subspace is «orphaned» from a variable. (Points’ selection was based on COR and 

CTR criteria). 

 
 

Figure 4: Factorial plane 1x2 of «objects» and variables 

 

Since the first two factorial axes create an orthogonal coordinate system, to 

measure the distance between a variable and a «subject» Euclidian metric between 

two points is used, through the use of their coordinates on the two axes. Using the 

MAD software, the smallest distance of each «subject» among the six variables is 

calculated, resulting, thus to the following finding. 

 

Table 9 shows that 7 respondents {122,238,420,630,635,820 and 1085} are 

connected to variable ∆5, since they have the smallest distance from the other five 

variables, while 8 respondents are connected to variable ∆4. 
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Table 9: Connection between «subjects» and variables based on two factors 

 

 
 

2) With three factorial axes 

 

If the first three axes are used and given that they constitute a three-orthogonal 

coordinates system in the three-dimensional space, then eight subspaces are created, 

in which they are placed, depending on the points coordinates’ signs. 

 

Therefore, if we symbolise points located in the 1st, 2nd, 3rd, and 4th subspace with 

the symbol ↑ next to the point’s identity, while for points located in the 5th, 6th, 7th, 

and 8th subspace we set the symbol↓ , we have for the first time in world literature, 

an illustration of three-dimensional space at plane, (without using the perspective 

method), therefore these diagrams hereinafter will be called Karapistolis diagrams. 

 

 The implementation of this particular procedure results firstly in Table 10 

through the placement of variables in the 8 subspaces, and secondly in Table 11 

through the placement of the 99 respondents to the corresponding subspaces, as well 

as the corresponding Karapistolis diagram. 
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Table 10: The eight subspaces with the variables located in them 
 

 

Table 11: The eight subspaces with the respondents located in 

 

Below is the diagram 

 

   Figure 5: Variables’ factorial space 1x2x3 

It is evident from Karapistolis diagram that variables ∆4 and ∆7, as well as 

variables ∆6 and ∆8 are located in different subspaces in the three dimensional 

space, with all that this might mean for their interpretation - at a rate of 80.11%, 

versus their interpretation provided by factorial plane 1x2 at a rate of 63.93%. 

According to table 11, based on the signs of the points’ three coordinates, their 

placement at the eight subspaces, variable ∆5 and the 9 respondents belonging to the 

4th subspace had to be interconnected through the use of the three factors, however, 
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when calculating minimum distances among respondents and variables, Table 12 

occurs, which informs us that only 4 respondents (122,630,635 and 1085) are 

connected to variable ∆5. The interesting is that among the nine respondents of the 

4th subspace, together with variable ∆5 (Table 11), only two - 630 and 635 – are 

actually connected to variable ∆5, since they are at smaller distance, while the other 

7 are connected to other variables, such as respondent 116 who is connected to 

variable ∆9 located in the 7th subspace, due to the smaller distance as compared to 

that from variable ∆5.  

 Table 12: Respondents’ connection to the variables according to three factors 

 
 

This different connection of respondents with variable ∆5 is due to a percentage 

of 16.19% of the information provided by the 3rd factorial axis. 

 

3. With the whole set of factorial axes 

 

Using all five factorial axes an orthonormal base is created at R5, where all 

variables and all respondents are placed in their real positions, from where all 

information of the data table is provided. The connection of the respondents based 

on the minimum distance among variables and “subjects” using all coordinates is 

presented in table 13, as opposed to their connections using the z distribution.  

 

It is evident from table 13 that 7 respondents {122,238,420,630, 635, 820,1085} 

are connected to variable ∆5,(as in the two factors case), while when it comes to 

respondents connected to variable ∆4, it can be seen that increasing the percentage 

of information from 63.11% to 100%, the number and the respondents connected to 



 25 

the variable are also differentiated, an observation which is also true for some other 

variables. 

Therefore, 8 respondents are connected to variable ∆4 with the first two actors, 

15 respondents are connected to three factors and 16 are connected to all actors. It is 

also worth noting that none of the 8 respondents that seems to be connected to 

variable ∆4, according to the two factors, does not seem to be connected to the 15 

respondents when the three factors are used, while when the whole set of factors is 

used, only 10 of the 15 continue to be connected to variable ∆4. 

 

This differentiation in terms of the number of respondents and the respondents 

that are connected to each variable, depending on the number of factors taken into 

account, means that the only correct procedure to identify the connection between 

respondents and variables in a data table, is to use all factors extracted from the 

Correspondence Analysis, since in this case an n-dimensional orthonormal space is 

created, which illustrates the actual picture of relationships among the points 

depicting the respondents and the points depicting the variables, offering 100% of 

information, independently of the participation of each «subject» in  factorial axes 

formation. 

The connection of subjects with variables based on Euclidian metric and 

maximum z distribution value are presented in the following table.  

 

Table 13: Connection of subjects and variables with the two different procedures 

(Euclidian metric and z distribution) 
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The ultimate purpose of this project is to prove the most effective solution for 

finding the connection among variables and subjects, having used the z distribution 

and the Euclidean metric. This purpose can be implemented as long as data deriving 

from table 13 are trained using machine learning classifiers, the SVM learning 

machine, in particular. 

 

Overview of data training using machine learning classifiers 

 

Machine learning is a field of artificial intelligence which concerns algorithms 

and methods allowing computers to «learn». The aim of machine learning is to 

create models using a dataset, through the use of a computer system. 

 

Various techniques of machine learning have been developed, which are used 

depending on the nature of the problem and fall within one of the following two 

types: 

 

1. Supervised learning 

 

2. Unsupervised learning 

 

In supervised learning the system is requested to «learn» a concept or function 

from a data set, which constitutes the description of a model. 

 

In unsupervised learning the system should find out on its own correlations or 

groups in a data set, creating prototypes, without knowing whether they exist, how 

many and which they are. 

 

In the present project supervised learning will be used, where the system should 

«learn» inductively a function called target function and constitutes an expression 

of the model describing the data. 

 

The target function is used to predict the value of a variable, which is called 

output variable, based on the values of a set of variables, which are called input 

variables or characteristics. 
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In supervised learning two types of problems (learning tasks) are identified, 

classification problems and regression problems.  

 

Classification relates to the creation of prediction models for discrete ranges 

(classes/categories). 

Regression relates to the creation of prediction models for numerical values. 

 

Support Vector Machines (SVM) 

 

Support Vector Machines (SVMs) are characterised as learning machines and 

they are based on Statistical Learning Theory and on Perceptron-type neural 

networks. They were proposed by Vladimir Vapnik. 

 

In the case of classification, SVMs try to find a hypersurface, which separates in 

the space of examples the negative from the positive examples. SVMs are 

characterised by the following stages:  

 

1. Training: In this phase parameters’ calculations of the learning model are 

performed using the appropriate learning data set.  

 

2. Test: The calculated parameters model (support vectors) is tested in terms of its 

ability in achieving successful result estimation in a non-trained data set. 

 

3. Performance estimation: The appropriate performance indicators of the model 

are calculated, mainly the error rate, aiming at the investigation of the model’s 

generalisability. 

 

Support Vector Machines (SVMs) belong to the Supervised Machine Learning 

algorithms with remarkable success in classification problems. Similar to most 

machine learning algorithms, they represent objects to be classified as feature 

vectors.     

In our case, the respondents are the objects to be classified and features provide 

information, such as whether the respondent to be classified is connected to variable 

Α or Β. 
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To use SVMs in classification problems with more than two classes two 

categories of approaches have been proposed: 

- Direct: Finding the differentiating hypersurfaces in a step (Vapnik, 1998; 

Crammer and Singer, 2000) 

 

- Indirect: Combination of the results of a set of binary SVMs: one-versus-one, 

one-versus-all (Vapnik, 1998)   

 

Indirect approaches are simpler and easier to implement, but none of the 

approaches returns probabilities. 

 

Implementation of the SVM learning machine 

 

To implement the proposed comparison six qualitative variables ∆4 to ∆9 are 

used again, the values of which concern the answers given by the 99 foreign visitors 

of Thessaloniki.  

 

Table 14 presents the connection of objects with the corresponding variables, 

firstly according to the minimum distance using Euclidean metric, and secondly 

with the maximum value of the z distribution.    

 

Table 14: Connection of the 99 objects and the 6 variables according to Euclidean 

metric (ΜΕΤ1) and maximum value of the z distribution (ΜΕΤ2) 

 

 

 

Note 1: The values of variables ΜΕΤ1 and ΜΕΤ2 from 1 to 6 correspond to 

variables ∆4 to ∆9. The coincidence between MEΤ1 and ΜΕΤ2 values reaches 

49.5% 
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Data training with the Support Vector Machine SVM 

 

Table 13 data training using the Support Vector Machine (SVM) it is found that 

the process of objects and variables connection through Euclidean metric is superior 

to the corresponding one using the z distribution. This finding arises since learning 

performance rate of table 13 data, relating to the connection of objects through 

Euclidean metric is higher (78.89% Table 15) than the one resulting from the z 

distribution (71.11% Table 16).    

   

Furthermore, through the use of Euclidean metric, after 20 data learning 

repetitions percentages above average are much higher (7 out of 20 repetitions 

above 80% with a maximum value of 100% and a minimum value of 61.11%) as 

compared to the corresponding percentages resulting from the z distribution, 

presenting a maximum value of 88.89% only and a minimum value of 44.44%. 

 
Table 15: SVM training based on the 

Euclidean metric 

Table 16: SVM training based on the z 

distribution 

  
 

The new procedure for the classification of data table rows. The KARAP 

method 

 

The proposed classification procedure answers the concern existing in each 

Ascending Hierarchical Classification through the VACOR method, i.e. that it is not 

possible to accurately identify objects connected with classes variables. 

 

For this reason, the proposed new classification procedure of n objects of a data 

table T(n,p), achieves to the extent that the researcher wishes, homogeneity of 
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objects in terms of their exclusive connection to each variable or if desired in terms 

of a combination of variables 

 

The proposed classification’s algorithm, named KARAP, which is implemented 

through the MAD program is as follows: 

 

1. Logical table 0-1 is created, derived from data table T(n,p),either using 

variables’ ratings, or Likert scales.Each object’s numbering corresponds from 1 to n. 

 

2. Logical Table 0-1 is analysed using the Correspondence Analysis to export 

the variables and objects’ coordinates on the factorial axes. 

 

3. Using the Fa and Ga coordinates it is possible to find the connection of each 

object with each variable based on Euclidean metric.  

 

If desired by the researcher, s/he can follow the steps below to classify objects in 

terms of a combination of variables, due to their great number.     

 

4. Table Burt is created, corresponding to logical table 0-1 

 

5. Ascending Hierarchical Classification is applied using the VACOR method 

on the Burt table’s data 

 

6. Based on hierarchy’s typology, which results from the segmentation of the 

dendrogram into k clusters, objects are classified depending on the variables with 

which they are connected, according to step 3. 

 

The implementation of the proposed classification according to steps 1 to 3, the 

following results were found using the 84 data of table 4 (all visitors not answering 

to a criterion were intentionally not included). 

 

Table 17 clearly shows the perceptions of all 84 respondents of this particular 

class regarding Thessaloniki in terms of the six criteria used in this study.  

 

For example they did not like or they were indifferent towards Greek cuisine (∆51, 

∆52 and ∆53 percentage 13/84=15.48%), while they endorsed locals friendliness   
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(∆94 and ∆95 21/84=25%), while they were also absolutely negative towards the 

city’s nightlife, at a percentage of 17.86%. 

 

Table 17: Classification of the 84 respondents based on the karap method 

 

 
 

Conclusion 

 

1. With the Karapistolis diagrams it is possible to graphically illustrate three 

dimensional space at plane, so that the researcher does not have to perform a 

classification to avoid confusion of adjacent points, belonging in different R3 

subspaces. 

 

2. With the SVM learning machine it is possible to objectively evaluate each 

classification type, no matter which metric was used to create it, aiding the 

researcher in comparing results between two different classification methods, as 

well as in identifying homogeneity of each classification’s classes.  

 

3. It is deemed necessary, every time the connection of objects to specific variables 

is to be investigated, firstly to use the whole set of actors resulting from the 

Correspondence Analysis and secondly to use the proposed classification 

procedure, named karap, since the researcher can identify the uniqueness of the 
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connection of objects within the classes in each rating of variables, thus 

interpreting more easily the behaviour of the whole set of objects.  

 

4. The karap method provides to the researcher compact classes, in terms of 

objects’ behaviour uniqueness for each cluster of variables, since it only 

includes objects, whose profile is connected to specific variables of each cluster. 
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